Akademik Çalışmalarımız
- Akademik Dergi Makaleleri
- Akademik Dergi Makaleleri(Basım Aşamasında)
- Kitap Bölümleri
- Tezler
- Konferans Bildirileri
- Patentler
- M. Kerpicci, H. Ozkan and S. S. Kozat, “Online Anomaly Detection with Bandwidth Optimized Hierarchical Kernel Density Estimators,” IEEE Transactions on Neural Networks and Learning Systems, Accepted, 2020.
- F. Ilhan and S. S. Kozat, `Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels,” IEEE Transactions on Signal Processing, Accepted, 2020.
- T. Ergen and S. S. Kozat, “A Novel Distributed Anomaly Detection Algorithm Based on Support Vector Machines,” Digital Signal Processing, Accepted, 2020.
- T. Ergen and S. S. Kozat, “Unsupervised Anomaly Detection with LSTM Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, Accepted, 2019.
- T. Ergen, A. H. Mirza and S. S. Kozat, “Energy Efficient LSTM Networks for Online Learning,” IEEE Transactions on Neural Networks and Learning Systems, Accepted, 2019.
- N. M. Vural, H. Gokcesu, K. Gokcesu and S. S. Kozat, “Minimax Optimal Algorithms for Adversarial Bandit Problem with Multiple Plays,” IEEE Transactions on Signal ProcessingNeural Networks and Learning Systems, Accepted, 2019.
- S. Sahin and S. S. Kozat, “Non-Uniformly Sampled Data Processing Using Long Short-Term Memory Networks,” IEEE Transactions on Neural Networks and Learning Systems, Accepted, 2018.
- K. Gokcesu and S. S. Kozat, “An Online Minimax Optimal Algorithm for Adversarial Multi-Armed Bandit Problem,” IEEE Transactions on Neural Networks and Learning Systems, Accepted, 2018.
- N. D. Vanli, M. O. Sayin, H. Ozkan, M. M. Neyshabouri and S. S. Kozat, “Nonlinear Regression via Incremental Decision Trees,” Pattern Recognition, Accepted, 2018.
- K. Gokcesu and S. S. Kozat, “Online Anomaly Detection with Minimax Optimal Density Estimation in Nonstationary Environments,” IEEE Transactions on Signal Processing, vol. 66, iss. 5, pp. 1213-1227, 2018.
- D. Kari, A. H. Mirza, F. Khan, H. Ozkan and S. S. Kozat, “Boosted Adaptive Filters,” Digital Signal Processing, Accepted, 2018.
- M. M. Neyshabouri, K. Gokcesu, H. Gokcesu, H. Ozkan and S. S. Kozat, “An Asymptotically Optimal Contextual Bandit Algorithm Using Hierarchical Structures,” IEEE Transactions on Neural Networks and Learning Systems, Accepted, 2018.
- O. F. Kilic, M. O. Sayin and S. S. Kozat, “Team-Optimal Online Learning of Dynamic Parameters over Distributed Networks,” Signal Processing, Accepted, 2018.
- T. Ergen and S. S. Kozat, “Online Training of LSTM Networks in Distributed Systems for Variable Length Data Sequences,” IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2017.2770179, 2017.
- T. Ergen and S. S. Kozat, “Efficient Online Learning Algorithms Based on LSTM Neural Networks,” IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2017.2741598, 2017.
- K. Gokcesu and S. S. Kozat, “Online Density Estimation of Nonstationary Sources Using Exponential Family of Distributions,” IEEE Transactions on Neural Networks and Learning Systems, DOI: 10.1109/TNNLS.2017.2740003, 2017.
- B. C. Civek and S. S. Kozat, “Efficient Implementation Of Newton-Raphson Methods On Time Series,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 12, pp. 2786-2791, 2017.
- M. O. Sayin, N. D. Vanli, S. S. Kozat and T. Basar, “Stochastic Subgradient Algorithms for Strongly Convex Optimization over Distributed Networks,” IEEE Transactions on Network Science and Engineering, vol. 4, iss. 4, pp. 248-260, 2017.
- M. O. Sayin,S. S. Kozat and T. Basar, “Team-Optimal Distributed MMSE Estimation in Tree and General Networks,” Digital Signal Processing, vol. 64, pp. 83-95, 2017.
- N. D. Vanli, M. O. Sayin, I. Delibalta and S. S. Kozat, “Sequential Nonlinear Learning for Distributed Multi-Agent Systems via Extreme Learning Machines,” IEEE Transactions on Neural Networks and Learning Systems, vol.28, pp. 546-559, 2017.
- I. Utlu and S. S. Kozat, “Resource-Aware Event Triggered Distributed Estimation Over Adaptive Networks,” Digital Signal Processing, vol. 68, pp. 127-137, 2017.
- D. Kari, N. D. Vanli, and S. S. Kozat, “Adaptive and Efficient Nonlinear Channel Equalization for Underwater Acoustic Communication,” Physical Communications, vol. 24, pp. 83-93, 2017.
- I. Delibalta, L. Baruh, and S. S. Kozat, “An Online Causal Inference Framework for Modeling and Designing Systems Involving User Preferences: A State-Space Approach,” Journal of Electrical and Computer Engineering, DOI: 10.1155/2017/1048385, 2017.
- M. M. Neyshabouri and S. S. Kozat, “Highly Efficient Nonlinear Regression for Big Data with Lexicographical Splitting,” Signal, Image and Video Processing, vol. 11, iss. 3, pp. 391-398, 2017.
- B. C. Civek, I. Delibalta and S. S. Kozat, “Highly Efficient Hierarchical Online Nonlinear Regression Using Second Order Methods,” Signal Processing, vol. 137, pp. 22-32, 2017.
- F. O. Kilic, M. O Sayin, I. Delibalta and S. S. Kozat, “Computationally Highly Efficient Mixture of Adaptive Filters,” Signal, Image and Video Processing, vol. 11(2), pp. 235-242, 2017.
- D. Kari, F. Khan, M. O. Sayin, and S. S. Kozat, “Robust Adaptive Algorithms for Underwater Acoustic Channel Estimation and Their Performance Analysis,” Digital Signal Processing, vol. 68, pp. 57-68, 2017.
- N. D. Vanli, K. Gokcesu, M. O. Sayin, H. Yilmaz and S. S. Kozat, “Sequential Prediction over Hierarchical Structures,” IEEE Transactions on Signal Processing, vol. 64, iss. 23, pp. 6284-6298, 2016.
- F. Khan, I. A. Karatepe and S. S. Kozat, “Universal Nonlinear Regression on High Dimensional Data Using Adaptive Hierarchical Trees,” IEEE Transactions on Big Data, vol. 2, iss. 2, pp. 175-188, 2016.
- N. D. Vanli, H. Ozkan and S. S. Kozat, “Online Classification via Self-Organizing Space Partitioning,” IEEE Transactions on Signal Processing, vol. 64, iss. 15, pp. 3895-3908, 2016.
- H. Ozkan, F. Ozkan and S. S. Kozat, “Online Anomaly Detection under Markov Statistics with Controllable Type-I Error,” IEEE Transactions on Signal Processing, vol. 64, no.6, pp. 1435-1445, 2016.
- H. Ozkan, F. Ozkan, I. Delibalta and S. S. Kozat, “Efficient NP tests for Anomaly Detection over Birth-Death Type DTMCs”, Journal of Signal Processing Systems, pp. 1-10, 2016.
- I. Delibalta K. Gokcesu, M. Simsek, L. Baruh and S. S. Kozat, “Online Anomaly Detection With Nested Trees,” IEEE Signal Processing Letters, vol. 23, iss. 12, pp. 1867-1871, 2016.
- N. D. Vanli, S. Tunc, M. A. Donmez and S. S. Kozat, “Growth Optimal Portfolios in Discrete-time Markets Under Proportional Transactions Costs,” Digital Signal Processing, vol. 48, pp. 226-238, 2016.
- H. Ozkan, O. Pelvan and S. S. Kozat, “Data Imputation through the Identification of Local Anomalies,” IEEE Transactions on Neural Networks and Learning Systems, vol 26, pp. 2381-2395, 2015.
- H. Ozkan, M. A. Donmez, S. Tunc and S. S. Kozat, “A Deterministic Analysis of an Online Convex Mixture of Experts Algorithm,” IEEE Transactions on Neural Networks and Learning Systems, vol. 26, no. 7, pp. 1575-1581, July 2015.
- N. D. Vanli and S. S. Kozat, “A Unified Approach to Universal Prediction: Generalized Upper and Lower Bounds,” IEEE Transactions on Neural Networks and Learning Systems, pp. 646-651, March 2015.
- M. O. Sayin, Y. Yilmaz, A. Demir and S. S. Kozat, “The Krylov-proportionate Normalized Least Mean Fourth Approach: Formulation and Performance Analysis,” Signal Processing, vol. 109, pp. 1-13, April 2015.
- N. D. Vanli, M. A. Donmez and S. S. Kozat, “Robust Least Squares Methods Under Bounded Data Uncertainties,” Digital Signal Processing, vol. 36, pp. 82-92, January 2015.
- N. D. Vanli and S. S. Kozat, “A Comprehensive Approach to Universal Piecewise Nonlinear Regression Based on Trees,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5471-5486, Oct. 2014.
- M. O. Sayin and S. S. Kozat, “Compressive Diffusion Strategies Over Distributed Networks for Reduced Communication Load,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5308-5323, Oct. 2014.
- M. O. Sayin, N. D. Vanli and S. S. Kozat, “A Novel Family of Adaptive Filtering Algorithms Based on The Logarithmic Cost,” IEEE Transactions on Signal Processing, vol. 62, no. 17, pp. 4411-4424, Sep. 2014.
- K. Kim, J. W. Choi, S. S. Kozat, A. C. Singer, “Low Complexity Turbo Equalization: A Clustering Approach,” IEEE Communications Letters, vol. 18, no. 6, pp. 1063-1066, June 2014.
- H. Ozkan, A. Akman and S. S. Kozat, “A Novel and Robust Parameter Training Approach for HMMs under Noisy and Partial Access to States,” Signal Processing, vol. 94, pp. 490-497, January 2014.
- M. O. Sayin and S. S. Kozat, “Single Bit and Reduced Dimension Diffusion Strategies Over Distributed Networks,” IEEE Signal Processing Letters, vol. 20, no. 10, pp. 976-979, October 2013.
- S. Tunc, S. S. Kozat, “Optimal Investment Under Transaction Costs: A Threshold Rebalanced Portfolio Approach,” IEEE Transactions on Signal Processing, vol. 61, issue 12, pp. 3129-3142, June 2013.
- K. Kim, N. Kalantarova, S. S. Kozat, A. C. Singer, “Linear MMSE-Optimal Turbo Equalization Using Context Trees,” IEEE Transactions on Signal Processing, vol. 61, issue 12, pp. 3041-3055, June 2013.
- M. A. Donmez, H. Inan, S. S. Kozat, “Adaptive Mixture Methods Using Bregman Divergences,” Digital Signal Processing, vol. 23, issue 1, pp. 88-97, January 2013.
- M. A. Donmez, H. Inan and S. S. Kozat, “Robust Estimation in Flat Fading Channels Under Bounded Channel Uncertainties,” Digital Signal Processing, vol. 23, no. 5, pp. 1592-1601, September 2013.
- S. S. Kozat, K. Guan, A. C. Singer, “Tracking the best level set in a level-crossing analog-to-digital converter,” Digital Signal Processing, vol. 23, issue 1, pp. 478-487, January 2013.
- M. A. Donmez, S. S. Kozat, “Steady-state MSE Analysis of Convexly Constrained Mixture Methods,” IEEE Transactions on Signal Processing, vol. 60, iss. 6, 3314-3321, 2012.
- N. Kalantarova, S. S. Kozat, A. T. Erdogan, “Robust Turbo Equalization Under Channel Uncertainties,” IEEE Transactions on Signal Processing, vol. 60, iss. 1, 261-273, 2012.
- S. S. Kozat, A. T. Erdogan, A. C. Singer, A. H. Sayed, “A Transient Analysis of Adaptive Affine Combinations,” IEEE Transactions on Signal Processing, vol. 59, iss. 1, 6227-6232, 2011.
- S. S. Kozat, A. C. Singer, “Universal Semiconstant Rebalanced Portfolios”, Mathematical Finance, vol. 21, no. 2, pp. 293-311, April 2011.
- S. S. Kozat, A. C. Singer, A. J. Bean, “A Tree-Weighting Approach to Sequential Decision Problems with Multiplicative Loss,” Signal Processing, vol. 92, issue 4, pp. 890-905, April 2011.
- Y. Yilmaz and S. S. Kozat, “Competitive Randomized Nonlinear Prediction Under Additive Noise,” IEEE Signal Processing Letters, vol. 17, issue 4, pp. 335-339, 2010.
- S. S. Kozat, A. T. Erdogan, A. C. Singer, A. H. Sayed, “Steady-state MSE Performance Analysis of Mixture Approaches to Adaptive Filtering,” IEEE Transactions on Signal Processing, vol.58, pp. 4050-4063, Aug. 2010.
- S. S. Kozat, A. C. Singer, A. T. Erdogan, A. H. Sayed, “Unbiased Model Combinations for Adaptive Filtering,” IEEE Transactions on Signal Processing, vol. 58, pp. 4421-4427, Aug. 2010.
- S. S. Kozat, A. T. Erdogan, “Competitive linear estimation under model uncertainties,” IEEE Transactions on Signal Processing, vol. 58, issue 4, pp. 2388-2393, April 2010.
- M. Vlachos, S. S. Kozat, P. Yu, “Optimal Bounds for Fast Search on Compressed Time-Series Query Logs,” ACM Journal of Web, vol. 2, issue 2, pp. 6.1-6.28., April 2010.
- S. S. Kozat, A. C. Singer, “Universal Randomized Switching”, IEEE Transactions on Signal Processing, vol. 58, issue 3, pp. 1922-1927, March 2010.
- S. S. Kozat, A. C. Singer, “Switching Strategies for Sequential Decision Problems with Multiplicative Loss with Application to Portfolios,” IEEE Transactions on Signal Processing, vol. 57, issue 6, pp. 2192-2208, 2009.
- S. S. Kozat, A. C. Singer, “Competitive Prediction Under Additive Noise”, IEEE Transactions on Signal Processing, vol. 57, issue 9, pp. 3698-3703, 2009.
- A. C. Singer, J. Nelson, S. S. Kozat, “Signal Processing for Underwater Acoustic Communications”, IEEE Communications Magazine, Vol. 47, pp. 90-96, Jan. 2009.
- S. S. Kozat, M. Vlachos, C. Lucchese, H. Van Herle, P. S. Yu, “Embedding and Retrieving Private Metadata in Electrocardiograms”, Journal of Medical Systems, Aug. 05, 2009.
- K. M. Guan, S. S. Kozat, A. C. Singer, “Adaptive Reference Levels in a Level-Crossing Analog-to-Digital Converter,” Eurasip Journal on Advances in Signal Processing, vol 2008, Issue 3, Jan. 2008.
- S. S. Kozat, A. Singer, “Universal Switching Linear Least Squares Prediction,” IEEE Transactions on Signal Processing, vol. 56, issue 1, pp. 189-204, 2008.
- S. S. Kozat, A. C. Singer, G. Zeitler, “Universal Piecewise Linear Prediction via Context Trees,” IEEE Transactions on Signal Processing, pp. 3730-3745, July 2007.
- A. C. Singer, S. S. Kozat, M. Feder, “Universal linear least squares prediction: upper and lower bounds,” IEEE Transactions on Information Theory, vol. 48, pp. 2354 -2362, Aug 2002.
- N.M. Vural, S.F. Yilmaz, F. Ilhan and S. S. Kozat, “LSTM-Based Online Learning: An Efficient EKF-Based Algorithm with a Convergence Guarantee,,” IEEE Transactions on Neural Networks and Learning Systems, 2020.
- N.M. Vural, S.F. Yilmaz, F. Ilhan and S. S. Kozat, “RNN-Based Online Learning: An Efficient First-Order Optimization Algorithm with a Convergence Guarantee,” IEEE Transactions on Neural Networks and Learning Systems, 2020.
- O. Karaahmetoglu and S. S. Kozat, “Prediction with Spatio-temporal Point Processes with Self Organizing Decision Trees,” IEEE Transactions on Signal Processing, 2020.
- F. Ilhan and S. S. Kozat, “Modeling of Spatio-Temporal Hawkes Processes with Randomized Kernels,” IEEE Transactions on Signal Processing, 2020.
- N.M. Vural, F. Ilhan S. S. Kozat, “Stability of the Decoupled Extended Kalman Filter in LSTM-Based Online Learning,” Digital Signal Processing,, 2020.
- N.M. Vural, F. Ilhan and S. S. Kozat, “RNN-Based Online Learning: An Adaptive Training Algorithm with a Convergence Guarantee in Nonstationary Environments,” IEEE Transactions on Neural Networks and Learning Systems, 2020.
- H. Gokcesu, M. Jaggi and S. S. Kozat, “Adaptive Online Convex Optimization with Minimax Optimal Dynamic Regret,” IEEE Signal Processing Letters, 2018.
- S. Sahin and S. S. Kozat, “A Tree Architecture of LSTM Networks for Sequential Regression with Missing Data,” Neural Networks, 2018.
- M. Kerpicci, H. Ozkan and S. S. Kozat, “Online Anomaly Detection with Bandwidth Optimized Hierarchical Kernel Density Estimators,” Pattern Recognition, 2018.
- T. Ergen, A. H. Mirza and S. S. Kozat, “Energy Efficient LSTM Networks for Online Learning,” Neural Networks, 2018.
- M. M. Neyshabouri, H. Ozkan and S. S. Kozat, “Sequential Outlier Detection based on Incremental Decision Trees,” IEEE Transactions on Signal Processing, 2018.
- H. Ozkan and S. S. Kozat, “Online Boosting with Multi-armed Bandits,” IEEE Signal Processing Letters, 2018.
- T. Ergen and S. S. Kozat, “Unsupervised and Semi-supervised Anomaly Detection with LSTM Neural Networks,” IEEE Transactions on Signal Processing, 2018.
- E. Yar and S. S. Kozat, “A Novel Short Text Categorization Model Based on Syllables and LSTM Networks,” IEEE Transactions on Knowledge and Data Engineering, 2018.
- K. Gokcesu, M. M. Neyshabouri and S. S. Kozat, “Online Density Estimation of Multimodal Sources using Growing and Decaying Decision Trees,” IEEE Signal Processing Letters, 2018.
- K. Gokcesu and S. S. Kozat, “Minimax Optimal Algorithms for Expert Selection under Convex and Non-convex Loss Functions,” IEEE Transactions on Signal Processing, 2018.
- H. Ozkan and S. S. Kozat, “Sequential and Randomized Quantization through AND-OR Graph Modeling,” IEEE Transactions on Signal Processing, 2017.
- N. D. Vanli, S. Tunc and S. S. Kozat, “Robust Portfolio Selection in Discrete-time Markets Under Transaction Costs,” Digital Signal Processing, 2017.
- N. D. Vanli, S. S. Kozat, “Online Nonlinear Modeling via Self-Organizing Trees,” Adaptive Learning Methods for Nonlinear System Modeling, Elsevier Publishing, Eds. D. Comminiello and J.C. Principe, 2018.
- S. S. Kozat, A. C. Singer, “Parametric Estimation,” Academic Press Library in Signal Processing, Sergios Theodoridis (Editor), Rama Chellappa (Editor), Elsevier, 2013.
- S. S. Kozat, “Competitive Signal Processing,” Ph.D. Dissertation, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 2004.
- S. S. Kozat, “Multistage Adaptive Filters,” MS. Thesis, Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 2001.
- S. F. Yilmaz, I. Balaban and S. S. Kozat, “Improved Named Entity Recognition in Turkish News via Word Lookup Methods,” IEEE Signal Processing and Communications Applications, 2020.
- S. F. Yilmaz and S. S. Kozat, “Face Presentation Attack Detection via Spatiotemporal Autoencoder,” IEEE Signal Processing and Communications Applications, 2020.
- S. F. Yilmaz and S. S. Kozat, “Robust Anomaly Detection via Sequential Ensemble Learning,” IEEE Signal Processing and Communications Applications, 2020.
- S. F. Yilmaz, I. Balaban, S. F. Tekin and S. S. Kozat, “Hybrid Framework for Named Entity Recognition in Turkish Social Media,” IEEE Signal Processing and Communications Applications, 2020.
- N. M. Vural, B. Altas, F. IIhan and S. S. Kozat, “Shortest Path Learning in Non- Stationary Enviroments via Online Convex Optimization,” IEEE Signal Processing and Communications Applications, 2020.
- N. M. Vural, B. Altas, F. IIhan and S. S. Kozat, “Online Shortest Path Learning via Convex Optimization,” IEEE Signal Processing and Communications Applications, 2020.
- N. M. Vural, B. Ozturk and S. S. Kozat, “An Optimal Algorithm for Adversarial Bandit Problem with Multiple Plays,” IEEE Signal Processing and Communications Applications, 2020.
- N. M. Vural, B. Ozturk and S. S. Kozat, “An Optimal Algorithm for Adversarial Bandit Problem with Multiple Plays in Non-Stationary Environments,” IEEE Signal Processing and Communications Applications, 2020.
- F. Ilhan , N. M. Vural and S. S. Kozat, “LSTM-Based Online Learning with Extended Kalman Filter Based Training Algorithm,” IEEE Signal Processing and Communications Applications, 2020.
- F. Ilhan , S. F. Yilmaz and S. S. Kozat, “A Two-Stage Multi-Class Classification Approach Based on Anomaly Detection,” IEEE Signal Processing and Communications Applications, 2020.
- T. Ergen and S. S. Kozat, “Computationally Efficient Online Regression via LSTM Neural Networks,” EUSIPCO, 2017.
- K. Gokcesu and S. S. Kozat, “A General Framework for Adversarial Bandits” EUSIPCO, 2017.
- K. Gokcesu and S. S. Kozat, “A Rate Optimal Switching Bandit Algorithm” EUSIPCO, 2017.
- B. C. Civek, S. Ciftci and S. S. Kozat, “Computationally Feasible Online Second Order Time Series Prediction” ICASSP, 2017.
- O. F. Kilic, M. O. Sayin, S. Ciftci and S. S. Kozat, “An Efficient Mixture of Expert Method for Big Data Applications Computationally Feasible Online Second Order Time Series Prediction” ICASSP, 2017.
- E. Yar, H. Ozkan, O. S. Pelvan, I. Delibalta, S. S. Kozat, “Data Imputation via the Detection of Localized Corruptions,” EUSIPCO, 2016.
- I. Utlu S. S. Kozat, “Distributed Adaptive Filtering With Reduced Communication Load,” EUSIPCO, 2016.
- Dariush Kari, Iman Marivani, Ibrahim Delibalta and S. S. Kozat, “Boosted LMS-based Piecewise Linear Adaptive Filters” EUSIPCO, 2016.
- O. Fatih Kilic, Ibrahim Delibalta and S. S. Kozat, “Adaptive Hierarchical Space Partitioning for Online Classification” EUSIPCO, 2016.
- O. Fatih Kilic, M. Omer Sayin, Ibrahim Delibalta and S. S. Kozat, “An Efficient Mixture of Experts Method for Big Data Applicationss” EUSIPCO, 2016.
- Mohammadreza Mohaghegh, Oguzhan Demir, Ibrahim Delibalta and S. S. Kozat, “Nonlinear Regression with Lexicographical Splitting of Regressor Space” EUSIPCO, 2016.
- E. Yar, I. Delibalta, L. Baruh, S. S. Kozat, “Online Text Classification and Regression for Real Life Tweet Analysis,” IEEE Signal Processing and Communications Applications (SIU), 2016. 2016.
- M. Simsek, I. Delibalta, L. Baruh, S. S. Kozat, “A State Space Modeling of Causal Inference in Social Networks,” IEEE Signal Processing and Communications Applications (SIU), 2016. 2016.
- O. F. Kilic, I. Delibalta S. S. Kozat, “Mixture of Set Membership Filters Approach for Big Data Signal Processing,” IEEE Signal Processing and Communications Applications (SIU), 2016. 2016.
- O. Demir, M. Mohaghegh, I Delibalta, S. S. Kozat,”A Tree-Based Solution to Nonlinear Regression Problem,” IEEE Signal Processing and Communications Applications (SIU), 2016. 2016.
- Burak C. Civek, Ibrahim Delibalta, Suleyman S. Kozat, “Boosted RLS and LMS Filters,”IEEE Signal Processing and Communications Applications (SIU), 2016. 2016.
- O. F. Kilic, N. D. Vanli, H. Ozkan, I. Delibalta, S. S. Kozat, “On-line Adaptive Space Partitioning Classifier,” IEEE Signal Processing and Communications Applications (SIU), 2016. 2016.
- N. D. Vanli, M. O. Sayin, I. Delibalta and S. S. Kozat, “Universal Online Prediction via Order Preserving Patterns,” IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015.
- N. D. Vanli, M. O. Sayin, I. Delibalta and S. S. Kozat, “Distributed Nonlinear Optimization Using Extreme Learning Machines,” IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015.
- M. O. Sayin, N. D. Vanli, I. Delibalta and S. S. Kozat, “Set Membership Filtering Approach for Mixture Combination of Adaptive Filters,” IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015.
- F. Khan I. Delibalta and S. S. Kozat, “High Dimensional Sequential Regression on Manifolds Using Adaptive Hierarchical Trees,” IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015.
- M. O. Sayin, N. D. Vanli, I. Delibalta and S. S. Kozat, “Efficient and Distributed Tracking of Evolving State,” IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015.
- H. Ozkan, F. Ozkan, I. Delibalta and S. S. Kozat, “Online Anomaly Detection with Constant False Alarm Rate” IEEE Workshop on Machine Learning for Signal Processing, Boston, 2015.
- M. O. Sayin, N. D. Vanli and S. S. Kozat, “Twice Universal Piecewise Linear Regression via Infinite Depth Context Tree,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Brisbane, Australia, 2015.
- M. O. Sayin, N. D. Vanli, I. Delibalta and S. S. Kozat, “Optimal and Efficient Distributed Online Learning for Big Data,” IEEE International Congress on Big Data, , NewYork, US, 2015.
- N. D. Vanli, M. O. Sayin, I. Delibalta and S. S. Kozat, “A Scalable Approach for Online Hierarchical Big Data Mining,” IEEE International Congress on Big Data, , NewYork, US, 2015.
- N. D. Vanli, M. O. Sayin, I. Delibalta and S. S. Kozat, “Online Nonlinear Classification for High-Dimensional Data,” IEEE International Congress on Big Data, , NewYork, US, 2015.
- M. O. Sayin, N. D. Vanli and S. S. Kozat, “Logarithmic Regret Bound Over Diffusion Based Distributed Estimation,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Florence, Italy, 2014.
- M. O. Sayin, N. D. Vanli and S. S. Kozat, “Improved Convergence Performance of Adaptive Algorithms Through Logarithmic Cost,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Florence, Italy, 2014.
- N. D. Vanli, M. A. Donmez and S. S. Kozat, “Robust Regularized Least Squares Estimation in the Presence of Bounded Data Uncertainties,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Florence, Italy, 2014.
- M. O. Sayin and S. S. Kozat, “Single Bit and Reduced Dimension Diffusion Strategies Over Adaptive Networks,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Florence, Italy, 2014.
- N. D. Vanli, M. O. Sayin, S. Ergut and S. S. Kozat “Piecewise Nonlinear Regression via Decision Adaptive Trees,” European Signal Processing Conference, Lisbon, Portugal, 2014.
- N. D. Vanli, M. O. Sayin, S. Ergut and S. S. Kozat “Comprehensive Lower Bounds on Sequential Prediction,” European Signal Processing Conference, Lisbon, Portugal, 2014.
- N. D. Vanli, M. O. Sayin, H. Yilmaz, T. Goze and S. S. Kozat “Energy Consumption Forecasting via Order Preserving Pattern Matching,” IEEE Global Conference on Signal and Information Processing, GlobalSIP, Atlanta, Georgia, USA, 2014.
- M. O. Sayin, N. D. Vanli, T. Goze and S. S. Kozat “Communication Efficient Channel Estimation Over Distributed Networks,” IEEE Global Conference on Signal and Information Processing, GlobalSIP, Atlanta, Georgia, USA, 2014.
- N. D. Vanli, M. O. Sayin and S. S. Kozat, “Competitive Linear MMSE Estimation Under Structured Data Uncertainties,” IEEE Signal Processing and Communications Applications Conference, Trabzon, Turkey, 2014.
- M. O. Sayin and S. S. Kozat, “Performance Analysis of Scalar Diffusion Strategy Over Distributed Network,” IEEE Signal Processing and Communications Applications Conference Trabzon, Turkey, 2014.
- M. O. Sayin, N. D. Vanli and S. S. Kozat, “Robust Set-Membership Filtering Algorithms Against Impulsive Noise,” IEEE Signal Processing and Communications Applications Conference Trabzon, Turkey, 2014.
- N. D. Vanli and S. S. Kozat, “Sequential Nonlinear Regression via Context Trees,” IEEE Signal Processing and Communications Applications Conference Trabzon, Turkey, 2014.
- H. Ozkan, M. A. Donmez, S. S. Kozat, “Competitive and Online Piecewise Linear Classification,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Vancouver, 2013.
- S. Tunc, M. A. Donmez, S. S. Kozat, “Growth Optimal Investment with Threshold Rebalancing Portfolios Under Transaction Costs,” IEEE Int. Conf. Acou. Speech Sig., ICASSP, Vancouver, 2013.
- M. A. Donmez and S. S. Kozat, “Steady state MSE analysis of convexly constrained mixture methods ,” Proceedings of Cognitive Information Processing Workshop, pp. 1-4, 2012.
- M. A. Donmez and S. S. Kozat, “Transient analysis of convexly constrained mixture methods,” Machine Learning for Signal Processing (MLSP), 2012 IEEE International Workshop on, pp. 1-5, 2012.
- H. Ozkan, A. Akman, S. Ergut, S. S. Kozat, “A Novel Training Algorithm for PHMMs,” Proceedings of Cognitive Information Processing Workshop, 2012.
- H. Ozkan, A. Akman and S. S. Kozat, “Hidden Markov Model training with side information,” Signal Processing and Communications Applications Conference (SIU), 2012 20th, pp. 1-4, 2012.
- H. Ozkan, O. S. Pelvan, A. Akman and S. S. Kozat, “A novel and incremental classification algorithm,” Signal Processing and Communications Applications Conference (SIU), 2012 20th, pp. 1-4, 2012.
- M. A. Donmez, S. Tunc, S. S. Kozat, “Optimal Portfolios Under Transaction Costs in Discrete Time Markets,” Proceedings of IEEE Workshop on Machine Learning for Signal Processing Workshop, 2012.
- M. A. Donmez, S. Tunc, S. S. Kozat, “Growth Optimal Portfolios in Discrete Time Markets Under Transaction Costs,” Proceedings of IEEE Conference on Signal Processing Advances in Wireless Communications, 2012.
- M. A. Donmez and S. S. Kozat, “A Novel Adaptive Diversity Achieving Channel Estimation Scheme for LTE,” Proceedings of International Conference on Mobile Computing and Networking, 2012.
- N. Kalantarova, M. A. Donmez and S. S. Kozat, “Competitive Least Squares Problems with Bounded Data Uncertainties,” IEEE Int. Conf. Acou. Speech Sig. Processing (ICASSP), Kyoto, 2012.
- M. Inan, M. A. Donmez S. S. Kozat, “Adaptive Mixture Methods Using Bregman Divergences,” IEEE Int. Conf. Acou. Speech Sig. Processing (ICASSP), Kyoto, 2012.
- N. Kalantarova, S. S. Kozat, A. T. Erdogan, “Robust Turbo Equalization Under Channel Uncertainties,” IEEE Radio and Wireless Symposium, Phoenix, 2011.
- N. Kalantarova, S. S. Kozat, A. C. Singer, K. Kim, “Nonlinear Turbo Equalization Using Context Trees,” ITA Workshop, UCSD 2011.
- N. Kalantarova, S. S. Kozat, A. T. Erdogan, “Robust Turbo Equalization Under Channel Uncertainties” Proceedings of IEEE Radio and Wireless Symposium, 2011.
- E. Bicici and S. S. Kozat, “Adaptive Model Weighting and Transductive Regression for Predicting Best System Combinations” Proceedings of ACL Joint Fifth Statistical Machine Translation and Metrics, pp. 282-287, 07, 2010.
- A. C. Singer, K. Kim, J. W. Choi, S. S. Kozat, “Nonlinear Adaptive filtering via Soft Clustured Linear Models” Proceedings of 44th Asilomar Conference on Signals, Systems and Computers, 11, 2010.
- Yasin Yilmaz and Suleyman S. Kozat,“A performance-weighted mixture of LMS filters,” Signal Processing and Communications Applications Conference (SIU), 2010 IEEE 18th , pp. 712-715, 2010.
- Andrew C. Singer and Suleyman S. Kozat, “A competitive algorithm approach to adaptive filtering,” Wireless Communication Systems (ISWCS), 2010 7th International Symposium on , pp. 350-354, 2010.
- M. Vlachos, S. S. Kozat, P. S. Yu, “Optimal Distance Bounds on Compressed Time-series Query Logs,” Proceedings of SIAM on Datamining, 2009.
- Yasin Yilmaz and Suleyman S. Kozat, “An Extended Version of the NLMF Algorithm Based on Proportionate Krylov Subspace Projections,” IEEE Conf. on Machine and Applications, , 2009.
- Suleyman S. Kozat, and Andrew C. Singer, “A performance-weighted mixture of LMS filters,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, pp. 3101-3104, 2009.
- Alper T. Erdogan, Suleyman S. Kozat, Andrew C. Singer, “Comparison of Convex Combination and Affine Combination of Adaptive Filters,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, 2009.
- Suleyman S. Kozat, Andrew C. Singer and Andrew Bean, “Universal portfolios via context trees,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, 2008.
- Suleyman S. Kozat and Andrew C. Singer, “Universal switching portfolios under transaction costs,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, pp. 5404-5407, 2008.
- B. Mohanty, J. Hershey, P. Olsen, S. S. Kozat, V. Goel, “Optimizing Speech Recognition Grammars Using a Measure of Similarity Between Hidden Markow Models,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, 2008.
- Suleyman S. Kozat, Andrew C. Singer, “Universal Constant Rebalanced Portfolios with Switching,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, pp. 1129-1132, April 2007.
- Georg Zeitler, Andrew C. Singer, Suleyman S. Kozat, “Universal Piecewise Linear Regression of Individual Sequences: Lower Bound,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, Page(s) 841-844, April 2007.
- Suleyman S. Kozat, Karthik Visweswariah, Ramesh Gopinath, “Efficient, Low Latency Adaptation for Speech Recognition,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, Page(s) 777-780, April 2007.
- Suleyman S. Kozat, Andrew C. Singer, “Universal Switching Linear Least squares Prediction ,” IEEE Conference on Information Theory and Its Applications, 6-10, UCSD, La Jolla, CA, 2006.
- Andrew C. Singer and Suleyman S. Kozat, “Universal Context Tree Least Squares Prediction ,” IEEE International Symposium on Information Theory, 2006.
- Suleyman S. Kozat, Karthik Visweswariah, Ramesh Gopinath, “Feature Adaptation Based on Gaussian Posteriors,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, 2006.
- Andrew C. Singer and Suleyman S. Kozat, “Universal Context tree p-th Order Least Squares Prediction,” IEEE Workshop on Machine Learning for Signal Processing, 2006.
- Suleyman S. Kozat, Andrew C. Singer, “Universal Portfolios for Switching and Side-information,” submitted to the IEEE Workshop on Machine Learning for Signal Processing, 2006.
- Suleyman S. Kozat, Andrew C. Singer, “Minmax Optimal Prediction with Side Information”, IEEE Int. Conf. on Acoustic Speech and Signal Processing, 469-72, 2004.
- David Luengo, Suleyman S. Kozat, Andrew C. Singer, “Universal Piecewise Linear Least squares Prediction,” IEEE International Symposium on Information Theory, pp 198, 2004.
- Suleyman S. Kozat, M. Kivanc Mihcak, Ramarathnam Venkatesan, “Robust Perceptual Image Hashing via Matrix Invariants,” IEEE International Conference on Image Processing, pp 3443-46, 2004.
- Suleyman S. Kozat, Andrew C. Singer, “A Lower Bound on the Performance of Sequential Prediction,” IEEE International Symposium on Information Theory, pp. 147-147, 2002.
- Suleyman S. Kozat, Andrew C. Singer, “Further Results on Multistage Adaptation Algorithms,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, pp. 1329-1332, Orlando, US, 2002.
- Suleyman S. Kozat, Andrew C. Singer, “On Universal Linear Prediction of Gaussian Data,” IEEE Int. Conf. on Acoustic Speech and Signal Processing, pp. 13-16, Istanbul, Turkey, 2000.
- Suleyman S. Kozat, Andrew C. Singer, “Multi-Stage Adaptive Signal Processing Algorithms,” First IEEE Sensor Array and Multichannel Sig. Proc. Workshop, pp. 380-384, March, 2000 Massachusetts, USA.
- “Digital goods representation based upon matrix invariances,” U.S. Patent, no. 10752268, January 2004, S. S. Kozat, M. K. Mihcak, R. Venkatesan.
- “Forward Error Correction for Media Transmissions,” U.S. Patent, no. 11675047, February 2007, P. A. Chou, D. Florencio, S. S. Kozat.
- “Model weighting, selection and hypotheses combination for automatic speech recognition and machine translation,” U.S. Patent, no. 11777426, July 2007, S. S. Kozat and R. Sarikaya.
- “Digital goods representation based upon matrix invariances,” European Patent, no. EP1553476B1 , March 2011, S. S. Kozat, M. K. Mihcak, R. Venkatesan.
- “Ihlal algilama sistemleri icin durum bilgisi tabanli bir sistem ve yontem,” Turkish Patent, no. GE-301331, July 2016, E. Yar, I. Delibalta, S. S. Kozat.
- “Ideal model esasli yeni nesil oneri motorlari,” Turkish Patent, no. GE-295394, July 2016, E. Yar, H. Demirel, S. S. Kozat, M. Simsek.
- “Algilayici dugumler uzerinde hedef takibi sistemi ve yontemi,” Turkish Patent, no. GE-295238, July 2016, E. Yar, I. Delibalta, S. S. Kozat.
- “Metin anlama sistemi,” Turkish Patent, no. GE-288684, July 2016, I. Delibalta, E. Yar, S. S. Kozat, M. C. Caliskaner, M. Simsek.
- “Model weighting, selection and hypotheses combination for intrusion detection,” US Patent, filed 2017, S. S. Kozat et. al.
- “Anomaliye dayali bilgisayar aglarinda saldiri tespit sistemi ve yontemi,” Turkish Patent, filed 2017,S. S. Kozat et. al.
- “Buyuk verilerde adaptif veri toplama, endeksleme ve sorgulama yapisi,” Turkish Patent, filed 2017,S. S. Kozat et. al.
- “Buyuk verilerde dagilimli aglarda tahmin yontemi ve sistemi,” Turkish Patent, filed 2017,S. S. Kozat et. al.
- “Buyuk verilerde dagilimli topolojilerde kisi hareket tahmin sistemi,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “CDR verilerine dayali dagilimli topolojilerde trafik miktari kestirim yontemi ve sistemi,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Dagilimli aglarda anomali tespitine dayali saldiri tespit metodu,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Durum farkinda bilgisayar aglarinda anomali tabanli saldiri onleme sistemi,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Duruma bagli varlik ismi tanima sistemi,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Tek kollu haydut tabanli saldiri tespit metodu,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Hece tabanli varlik tanima sistemi,” Turkish Patent 2017, filed, S. S. Kozat et. al.
- “Hece tabanli duygu tanima sistemi,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Ideal model esasli yeni nesil oneri motorlari,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Uzman karisimlari ile anomali tespiti yapan sistem ve yontem,” Turkish Patent, filed 2017, S. S. Kozat et. al.
- “Anahtarlamali tek kollu haydut tabanli anomali tespit metodu,” Turkish Patent, filed 2017, S. S. Kozat et. al.